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I. INTRODUCTION: 
It is now clear that solid tumor development is profoundly regulated by infiltrating immune cells 
of both the innate and adaptive lineages (1, 2). Diverse populations of leukocytes infiltrate tumor 
microenvironments and are altered by the neoplastic cells and surrounding stroma in such a way 
that many of their bioactivities are co-opted to aid growth and/or metastasis of nascent tumors. 
Out of this realization emerges novel targets for therapy that may impact patient survival, i.e., 
immune targets regulating primary tumor development, and those regulating metastatic 
dissemination and growth. Metastasis is a highly complex process and involves multiple stages. 
First, malignant cells must intravasate into blood vessels and enter the peripheral circulation; 
second, they must survive in the blood, third, they must extravasate and leave the blood and enter 
a distal organ; and fourth, they must be able to survive and proliferate in ectopic sites. 
Preliminary analyses in the Coussens laboratory using a mouse model of breast cancer has 
revealed that absence of a single intracellular leukocyte lysosomal protease, i.e. cathepsin C 
(CTSC), reduces the ability of malignant mammary epithelial cells to metastasize to the lungs. 
As metastasis is a leading cause of mortality in cancer patients, these findings indicate that CTSC 
is a potential therapeutic target for breast cancer. To examine this possibility, the mechanism by 
which CTSC regulates pulmonary metastasis will be determined in vivo. In addition, we will 
reveal the therapeutic efficacy of targeting CTSC to inhibit lung metastasis in vivo. And finally, 
we will evaluate a large cohort of human breast caner tissues for CTSC expression, and 
determine if this molecule can be used as a biomarker to predict clinical outcome and therefore 
guide therapy.  
 
 
II. RESEARCH ACCOMPLISHMENTS BODY:  
 
AIM 1: DETERMINE THE FUNCTIONAL ROLE OF CATHEPSIN C IN REGULATING LEUKOCYTE 
INFILTRATION AND BIOACTIVITY IN MAMMARY ADENOCARCINOMA DEVELOPMENT AND 
METASTASIS 
 
Establish the profile of cells expressing CTSC during tumor development and metastasis:  
 
Profile CTSC expression in mammary and lung tissue of MMTV-PyMT mice by flow 
cytometry. (months 1-6) 

 
Despite using bone marrow derived mast cells from Ctsc+/- and Ctsc-/- mice, we were unable to 
detect a clear signal by flow cytometry following intracellular staining for CTSC. We therefore 
optimized staining for CC and other lineage markers for both immune and non-immune 
populations in PyMT tumors using PFA-fixed frozen tissue. As reported in our initial 
application, F4/80+ macrophages within the tumors were the dominant population expressing 
CTSC (Figure 1), with lower expression of CTSC in other tumor-infiltrating immune cells such 
as T cells and neutrophils (data not shown). Surprisingly however, the use of CTSC-deficient 
animals as a staining control revealed low, but consistent, expression of CTSC in other stromal 
cells such as fibroblasts and pericytes, in addition to the cancer cells themselves. Given the 
reduced metastatic phenotype in PyMT/Ctsc-/- animals, we also stained for CTSC in the lung 
(Figure 2). While a similar expression pattern was observed in immune populations and in 
metastatic cancer cells, CTSC was not detected in the other stromal populations within the lung. 
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Figure 1: Cathepsin C is primarily expressed by macrophages in primary mammary tumors. Low CTSC 
expression levels were visualized by confocal microscopy within tumor cells (Keratin+, bottom panels), CD31+ 
endothelial cells and SMA+ pericytes (2nd from bottom), as well as fibroblasts (PDGFRα+, middle panels). High 
expression of CTSC was observed in CD45+ leukocytes (top panels) including F4/80+ macrophages (2nd from 
top). 
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Figure 2: Cathepsin C is primarily expressed by macrophages in metastatic lungs. Low CTSC expression 
levels were visualized by confocal microscopy within metastatic foci tumor cells (Keratin+, bottom panels), but 
not in non-leukocytic stromal cells including CD31+ endothelial cells, SMA+ pericytes (2nd from bottom), and 
fibroblasts (PDGFRα+, middle panels). High expression of CTSC was observed in CD45+ leukocytes (top 
panels) including F4/80+ macrophages (2nd from top). 
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Evaluate CTSC activity using a 
selective probe, FY02, in lysates of 
purified leukocytes isolated from 
mammary glands, peripheral blood 
and lung from MMTV-PyMT mice. 
(months 3-6) 
 
Detecting CTSC activity in specific 
leukocyte populations proved 
technically challenging, as 
approximately 1x106 CD45+ cells were 
required to either detect a signal with 
the FY02 probe (3), or western blot for 
CTSC. To demonstrate that CTSC 
protein expression determined by 
confocal microscopy corresponded to 
CTSC activity in leukocytes, CD45+ 
and CD45- cells were sorted from 
PyMT tumors or metastatic lungs and 
cell lysates were analyzed using the 
FY02 probe. Both CTSC protein and 
activity were found only within the 
CD45+ population (Figure 3B), 
indicating that leukocytes express the 
majority of active CTSC within both 
tumors and lungs. Specific purification 
of F4/80+ macrophages also revealed 
CTSC activity within this specific 
leukocyte population (Figure 3C). As 
anticipated from increased gene 
expression of Ctsc in PyMT tumors 
compared to normal mammary glands 
(~7-fold, data not shown),  higher 
CTSC activity was also observed 
(Figure 3A). 
 
 
Quantitatively assess activity of 
CTSC enzymatic substrates in 

purified leukocytes using selective protease activity assays (months 6-12) 
 
As discussed below, we have yet to identify the specific leukocyte population responsible for the 
reduced metastatic phenotype in PyMT/Ctsc-/- animals, and even have some preliminary data 
suggesting that it is expression of CTSC by the tumors cells themselves that is important for the 
phenotype. Pending identification of the cell type of interest, analysis of CTSC substrate activity 
is currently on hold. 

 
 
Figure 3: Cathepsin C expression and activity is 
preferentially found in CD45+ tumor and lungs 
associated leukocytes.  A) FY02 labeling of total cell 
extracts from mammary glands and carcinomas from Ctsc+/- 
and Ctsc-/- PyMT transgenic or negative littermates (-LM). 
CTSC protein levels were assessed by western blotting for all 
samples (bottom panel). B) FY02 labeling of total cell 
extracts from non FACS-sorted (total), CD45+ and CD45- 
FACS-sorted cells from Ctsc-proficient PyMT mammary 
carcinomas and lungs. C) Same as (B), but for F4/80+ 
purified TAMs. 
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Assess functional significance of CTSC in regulating macrophage phenotype: 
Analyze polarization state of tumor-associated macrophages by intracellular staining for 
cytokine expression. (months 1-6)  
 
Verify macrophage polarization by iNOS and arginase expression levels by real time PCR. 
(months 6-9)  
 
Compare the ability of PyMT/Ctsc+/- and PyMT/Ctsc-/- tumor-associated macrophages to 
influence invasive properties of malignant MECs grown as organoids using the 3D 
organotypic model. (months 6-12) 
 
While we originally proposed analyzing macrophage polarization and then examining whether 
altered polarization resulted in a functional difference in the ability of macrophages to promote 
invasion, we instead bypassed the early steps to directly determine whether CTSC expression by 
macrophages was important for this process. As shown in Figure 4A, expression of the M2 
macrophage marker CD206 and the M1 marker MHCII were unchanged between PyMT/Ctsc+/- 

and PyMT/Ctsc-/- macrophages. 
Furthermore, while as reported 
the IL-4-dependent polarization 
of the macrophages promoted 
the invasive properties of the 
cancer cells in the 3D 
organotypic model (4), invasion 
was unaffected by macrophage 
CTSC expression (Figure 4B). 
Based upon these results, and 
the preliminary data suggesting 
intrinsic CTSC expression by 
cancer cells is critical for lung 
colonization (see Aim 2), further 
analysis of macrophage 
polarization is currently on hold. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4: Cathepsin C expression does not influence 
macrophage-dependent tumor invasion in vitro. A) 
Purification and analysis of polarization markers. TAMs were 
purified to >90% via magnetic beads and analyzed for marker 
expression by flow cytometry. B) 3D organotypic invasion assay 
with unpolarized or interleukin-4 polarized TAMs from both 
PyMT/Ctsc+/- (blue) and PyMT/Ctsc-/- (red) mice. Representative 
organoids (green) with TAMs (red) are shown on the right, while 
quantitation of the percent of organoids displaying invasive acini 
greater than half their diameter is shown on the left. 
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Evaluate leukocyte infiltration regulated by CTSC in PyMT mice:  
Analyze leukocyte infiltration in mammary and lung tumors in PyMT/Ctsc+/- and 
PyMT/Ctsc-/- mice using multicolor flow cytometry. (months 1-6) 
 
Measure cytokine expression levels in mammary and lung tumors in PyMT/Ctsc+/- and 
PyMT/Ctsc-/- mice via ELISA. (months 3-9) 
 
Identify leukocyte populations with altered cytokine expression profiles in mammary and 
lung tumors in PyMT/Ctsc+/- versus PyMT/Ctsc-/- mice using intracellular cytokine staining 
and multicolor flow cytometry. (months 9-12) 
 
12-color polychromatic flow cytometry was used to analyze tissue invasion by leukocytes and 
activation/polarization through extracellular markers. As shown in Figure 5D, leukocyte 
populations in both mammary glands and mammary tumors were unchanged between Ctsc+/- and 

Ctsc-/- mice, with total 
leukocyte infiltration was also 
unchanged (Figure 5C). 
Leukocyte populations within 
the spleen, lymph node and 
peripheral blood; and 
expression of T cell activation 
markers were also unchanged 
(data not shown). Based upon 
our discovery that stromal 
populations and malignant 
epithelial cells also expression 
CTSC (Figure 1), we adapted 
our flow cytometric protocol 
to examine cellular 
composition of tumors. As 
show in Figure 5A, the 
relative frequency of 
fibroblasts (PDGFRα+), 
endothelial cells (CD31hi), 
pericytes (SMA+ or Desmin+) 
and lymphatic endothelial 
cells (CD31lo) was unchanged 
by CTSC expression. Based 
upon these results, and the 
preliminary data suggesting 
intrinsic CTSC expression by 
cancer cells is critical for lung 
colonization (see Aim 2), 
further analysis of cytokine 
expression by leukocytes is 
currently on hold. 

 
Figure 5: Stromal and leukocytes composition is not altered by 
the presence of Cathepsin C. A) The stromal composition of 
mammary tumors determined by polychromatic flow cytometry 
through analysis of the cytokeratin negative populations in 
PyMT/Ctsc+/- (blue) and PyMT/Ctsc-/- (red) animals. B) Analysis of A 
showing the ratio of pericytes (either SMA or Desmin positive) to 
endothelial cells (CD31hi). C) Percent of total cells that are CD45+ 
as determined by immunohistochemistry (IHC). D) Composition of 
leukocytes (CD45+ cells) within mammary glands taken from 
negative littermates (-LM) and mammary tumors from PyMT 
animals as determined by polychromatic flow cytometry. 
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AIM 2: DETERMINE AT WHICH STAGE OF CANCER DEVELOPMENT CATHEPSIN C FUNCTIONALLY 
REGULATES PULMONARY METASTASIS OF MAMMARY CARCINOGENESIS 
 
Determine if cathepsin C regulates intravasation from primary mammary tumors into the 
circulation:  
Measure the number of circulating neoplastic cells in the blood of PyMT/Ctsc+/- and 
PyMT/Ctsc-/- mice at day 85 and 95 using either flow cytometry or PCR. (months 12-18) 

 
Preliminary data described in the 
initial application showed a 
reduction in the number of 
circulating carcinoma cells in the 
blood of PyMT/Ctsc-/- mice (n=3). 
However, increasing the number of 
animals analyzed has revealed no 
significant difference in circulating 
carcinoma cells when measured by 
flow cytometry (Figure 6D), or 
gene expression of the PyMT 
transgene or keratin 18 (Figure 6C). 
These results suggest that the ability 
to extravastate into the blood and 
survive in circulation are unaffected 
by CTSC. This supports the data 
from Figure 4, demonstrating no 
defect in the ability of CTSC-
deficient TAMs to induce invasion. 
 
Examine directional growth of 
neoplastic cells in the 3D 
organotypic model during co-
culture with the leukocyte 
populations identified in Aim 1. 
(months 12-18) 
 
These studies have not yet been 
initiated. 
 
Examine the ability of leukocyte 
populations to induce chemotaxis 
of neoplastic cells using a 
modified Boyden chamber 
(months 18-21) 
 
These studies have not yet been 
initiated. 

 
Figure 6: Cathepsin C expression by tumor cells affects 
lung metastasis but not intravasation from the primary 
tumor. A) Representative lung sections depicting metastatic 
tumor burden at day 110 visualized by H&E staining. The scale 
bar represents 1 mm. B) Quantitation of average number of 
metastatic foci/5.0 mm2 lung section for PyMT/Ctsc+/- (blue) and 
PyMT/Ctsc-/- (red) mice at end stage. C) Real-time PCR 
quantitation of Keratin 18 and PyMT gene expression from 
circulating cells. Normalization was done with expression of 
control gene TBP (TATA box binding protein). D) Quantitation 
of circulating cytokeratin+CD45- cells by flow cytometry.  E) 
Lung colonization of Ctsc+/- and Ctsc-/- negative littermates 
following injection of carcinoma cells isolated from either 
PyMT/Ctsc+/- or PyMT/Ctsc-/- mice. 
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Adoptive transfer of splenic T cells into PyMT/Ctsc-/- mice and evaluation of lung 
metastasis and the number of circulating MECs. (months 18-24) 

 
These studies have not yet been initiated. 

 
Determine of cathepsin C regulates MEC survival in blood, lung seeding, or outgrowth: 
Generate 4 neoplastic cell lines from PyMT/Ctsc+/- and PyMT/Ctsc-/- mice that are also 
transgenic for GFP (2 from early non-invasive mammary tumors and 2 from late, invasive 
tumors). (months 1-6) 
 
Neoplastic cells have been purified from two late stage PyMT/Ctsc+/- and PyMT/Ctsc-/- mice and 
one set of cells from each genotype has been used in a preliminary experiment (see below). 
Breeding issues have delayed generating PyMT/Ctsc+/- and PyMT/Ctsc-/- mice that also express 
GFP under control of the β-actin promoter, but these mice have now been generated and mice 
are aging out. 
 
Intravenously inject neoplastic cell lines in Ctsc+/- and Ctsc-/- mice and measure MEC 
survival in the blood, lung infiltration, and outgrowth/tumor progression. (months 12-18) 
 
One experiment has so far been completed wherein neoplastic cells from PyMT/Ctsc+/- and 
PyMT/Ctsc-/- mice were intravenously injected into Ctsc+/- and Ctsc-/- mice and the formation of 
metastatic lesions analyzed after 14 days. Surprisingly, CTSC-proficient neoplastic cells in 3/5 
mice were able to form a substantial number of foci, irrespective of the host genotype (Figure 
6E). CTSC-deficient neoplastic cells meanwhile, formed few lesions in all mice. Repetition of 
this experiment is currently underway to determine if this is a valid finding, but if true, it 
suggests that intrinsic expression of CTSC by tumor cells is important for the later stages of 
metastasis. Normal levels of circulating carcinoma cells in PyMT animals (Figure 6C and D) 
suggests this effect would not be due to survival in the blood, but either intravasation into the 
lung or survival/growth within the lung. GFP expressing neoplastic cells will be used in the 
future to differentiate between these possibilities. 
 
If extravastion into the lung is affected by cathepsin C expression, then examine rolling, 
adhesion, and transmigration of neoplastic cell lines on immortalized mouse endothelial 
cells. (months 18-24) 
 
These studies have not yet been initiated. 
 
If tumor growth or development is altered, inject neoplastic cells subcutaneously in a 
xenograft model along with purified tumor-associated leukocytes and measure early 
growth. (months 18-24) 
 
These studies have not yet been initiated. 
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Determine if metastasis of mammary tumors is regulated by leukocyte-derived CTSC:  
Generate bone marrow chimeric mice by using irradiated PyMT/Ctsc+/- and PyMT/Ctsc-/- 
mice and the bone marrow from GFP+ and GFP+/Ctsc-/- mice. (months 12-24) 
 
Analyze tumor incidence, growth, progression and metastasis in the four combinations of 
chimeric mice. (months 18-36) 
 
If tissue cathepsin C expression appears to be important, generate chimeric mice that do 
not express PyMT and measure tumor growth in a xenograft model and lung metastasis 
following intravenous injection. (months 18-36) 
 
These studies have not yet been initiated. 
 
 
AIM 3: DEVELOP DIAGNOSTIC AND THERAPEUTIC APPROACHES BASED ON CATHEPSIN C 
BIOACTIVITY TO IMPROVE BREAST CANCER PATIENT SURVIVAL 
 
Develop a probe to measure cathepsin C activity in live mice: 
Generate FY01-GdDTPA and FY01-FITC. (months 12-18) 
 
Adjust animal protocol to include use of FY01-GdDTPA and JCP410. (months 12-18) 
 
Evaluate entrance of labeled FY01 into purified TAMs (months 18-21) 
 
Evaluate entrance of labeled FY01 into TAMs in vivo (months 18-21) 
 
Analyze entrance of FY01-GdDTPA into tumors using MRI. (months 21-24) 
 
These studies have not yet been initiated 
 

 
Evaluate efficacy of a selective cathepsin C inhibitor in reducing pulmonary metastasis: 
Examine the effect of the selective cathepsin C inhibitor JCP410 in the 3D organotypic co-
culture model. (months 24-30) 
 
Evaluate the ability of JCP410 to inhibit cathepsin C activity in mammary and lung tumors 
by analyzing post-injection activity by MRI or staining unfixed tissue sections. (months 24-
36) 
 
Evaluate the efficacy of JCP410 in inhibiting pulmonary metastasis through bi-weekly i.p 
injection in mice of age 60 and 80 days. (months 24-36) 
 
These studies have not yet been initiated 
 
Evaluate cathepsin C activity during human breast cancer progression:  
Submit proposal for use of human tissue (months 12-24) 
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Analyze expression of cathepsin C in fixed sections of human mammary tumors by double 
staining for cathepsin C and leukocyte markers followed by confocal microscopy. (months 
24-36) 
 
If cathepsin C expression is observed, measure activity in unfixed tissue sections using 
FY02 (months 24-36) 
 
Correlate cathepsin C expression and activity with information available about the clinical 
stage of the cancer and/or the outcome. (months 30-36) 
 
Analyze breast cancer tissue microarray data with 10 year follow up data for a correlation 
between cathpesin C expression and clinical stage and/or outcome. (months 30-36) 
 
Evaluate role of human leukocytes to promote invasive growth in the 3D organotypic co-
culture model using human breast cancer cell lines (months 24-30) 
 
Evaluate ability of JCP410 to inhibit the promotion of invasive growth by leukocytes 
(months 30-36) 
 
These studies have not yet been initiated 
 
 
III. KEY RESEARCH ACCOMPLISHMENTS:  
 
Aim 1: Determine the functional role of cathepsin C in regulating leukocyte infiltration and 
bioactivity in mammary adenocarcinoma development and metastasis 
 
Months 1-12 

• Predominant expression of CTSC by TAMs in mammary tumors and lungs. 
• Low expression levels of CTSC by stromal and neoplastic cells in tumors. 
• CTSC activity and protein levels increased in tumors versus mammary glands. 
• CTSC activity localized to leukocytes and TAMs in mammary tumors. 
• CTSC expression by TAMs does not affect their ability to induce invasion by MECs. 
• CTSC expression does not affect the composition of leukocytes within the tumor. 
• CTSC expression does not affect the composition of the stromal compartment. 

 
Aim 2: Determine at which stage of cancer development cathepsin C functionally regulates 
pulmonary metastasis of mammary carcinogenesis 
 
Months 1-12 

• CTSC expression does not influence the number of circulating neoplastic cells 
• Preliminary data suggesting CTSC expression by neoplastic cells is important in 

mediating the later stages of lung metastasis. 
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Aim 3: Develop diagnostic and therapeutic approaches based on cathepsin C bioactivity to 
improve breast cancer patient survival 
 
Months 1-12 

• These studies have not yet been initiated 
 
IV. REPORTABLE OUTCOMES:  
 
Manuscripts: 
 
Ruffell, B., D. G. Denardo, N. I. Affara, and L. M. Coussens. 2010. Lymphocytes in cancer 
development Polarization towards pro-tumor immunity. Cytokine Growth Factor Rev 21:3-10. 
 
Abstracts/Posters: 

• ‘Role of Cathepsin C During Breast Cancer Metastasis’, Breast Oncology Program 
Retreat. San Francisco, CA. January 29-30, 2009.  

• ‘Role of Cathepsin C During Breast Cancer Metastasis’, Diller Building Scientific 
Symposium. San Francisco, CA. August 27-28, 2009. 

 
Presentations: 

• ‘Role of Cathepsin C During Breast Cancer Metastasis’, Stanford Univ. School of Medicine. 
August, 2009. 

• ‘Role of Cathepsin C in Cancer Progression’, Pacific Coast Protease Meeting, Borrego 
Springs, CA. April 2010. 

 
V. CONCLUSION:  
It is now clear that infiltrating immune cells profoundly regulate solid tumor development. 
Diverse populations of cells infiltrate tumor microenvironments and are altered by cancer cells 
and surrounding stroma in such a way that many of their bioactivities are co-opted to aid growth 
and/or metastasis of tumors. Out of this realization emerges novel targets for therapy that may 
impact patient survival, i.e., immune targets regulating primary tumor development, and those 
regulating metastatic dissemination and growth. It is thus hypothesized that manipulating the 
immune response and neutralizing its effect on neoplastic cells represents an efficacious 
alternative approach to current disease management. Preliminary analyses using a mouse model 
of breast cancer supports this hypothesis, by demonstrating that absence of a single immune cell 
enzyme reduces the ability of malignant breast cancer cells to metastasize to the lungs. Results 
from this study will therefore prove significant for elucidation of an important regulatory cascade 
affecting pulmonary metastasis. Furthermore, as metastasis is a leading cause of mortality in 
breast cancer, this research may lead to the identification of a novel therapeutic target for 
reducing breast cancer mortality. This is an innovative approached to formulating a novel anti-
cancer therapy, as it targets a molecule expressed by normal cells. This contrasts with the 
traditional development of anti-cancer therapies, which are most often based upon molecules 
expressed by cancer cells that are important for their survival or growth. This innovative 
approach has two potential advantages over the traditional method: it avoids selecting for 
treatment-resistant neoplastic cells by instead targeting the pro-tumor activities of the 
microenvironment; and by targeting a specific pro-tumor pathway, there is a strong possibility of 
developing a treatment with low toxicity. 
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1. Introduction

Leukocyte infiltration into developing tumors is now considered
one of the hallmarks of cancer development [1]. It is thought that
the initial immune response to an early neoplasm mirrors the
response to acute tissue injury, with sequential infiltration by
various myeloid populations leading to eventual infiltration by
lymphocytes [2]. However, as the kinetics of tumor development
and the neoplastic cells themselves alter the local immune
microenvironment, making inferences between an immune
response to injury/infection and tumor development is difficult.
Regardless, if clearance of thewould-be cancer cells is not achieved
and the initial acute inflammatory response fails to resolve, there
inevitably results a state of chronic inflammation within the local
tissue. It is nowwell established that chronic inflammation fosters
early cancer development through a number of mechanisms
mediated primarily by myeloid-lineage cells, including tumor-
associated macrophages, immature myeloid cells that can possess
suppressive activity, and Tie2-expressing monocytes [3,4]. The
immunemicroenvironment of a neoplastic tissue encompasses not
only the composition of infiltrating leukocytes, but also the
bioeffector function of these cells within the tissue. Thus, both the
presence of a cell within a tumor and expression of tissue-specific
cytokines, chemokines and other immune mediators profoundly
influence whether an anti-tumor or pro-tumor immune response
is elicited [4,5].

Although responding to tissue damage in the form of
inflammatory cues, tumor-infiltrating myeloid cells rapidly
respond to soluble and insoluble signals emanating from the
neoplastic microenvironment. Responses take the form of dra-
matically altered gene expression programs that alter bioeffector
functions of the immune cells. These often result in increased
expression of factors/mediators that enhance growth and survival
of neoplastic cells, as well as activating and sustaining angiogenic
responses, furthering tissue remodeling, and squelching anti-
tumor immune programs [4]. Chronic inflammation in tissue
resulting from infection or autoimmune disease can also alter the
risk of cancer development by providing an environment permis-
sive for initiated preneoplastic cell survival and subsequent
proliferation, as well as through production of DNA damaging
compounds such as reactive oxygen and nitrogen species that
increase mutation frequency [6]. While all of these aspects of solid
tumor development are susceptible to regulation by infiltrating
immune cells, in the context of this review, we will focus on
aspects of carcinogenesis regulated by infiltrating lymphocytes, as
mechanisms regulated by myeloid cells have been reviewed
elsewhere [5–9].

1.1. T lymphocytes

T cells develop in the thymus from a common lymphoid
progenitor and are defined by expression of a T cell receptor (TCR)
that is responsible for recognizing antigens presented by themajor
histocompatibility complex (MHC) family of genes (also called
human leukocyte antigen or HLA). T cells are classically divided
into either CD8+ cytotoxic lymphocytes (CTL) or CD4+ T helper (TH)
cells that recognize peptides presented by MHCI or MHCII,
respectively (Fig. 1). TH cells are further divided into interferon
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(IFN)-g and tumor necrosis factor (TNF)-a expressing TH1 cells and
interleukin (IL)-4, IL-5 and IL-13 expressing TH2 cells. This
simplified view of the T cell compartment has been expanded
upon by the identification of a range of additional subtypes,
including T follicular helper cells (TFH), IL-17 expressing TH cells
(TH17), and regulatory T cells (Treg) [10]. Paralleling these subtypes
in the CD4+ T cell compartment, type 1, type 2, and type 17 CD8+ T
cells (TC1, TC2, TC17), as well as regulatory CD8+ cells, have all been
described [11–13]. There also exist two ‘innate-like’ T cell subsets
that can be activated either by cytokines or TCR stimulation.
Natural killer T (NKT) cells recognize glycolipids presented by the
non-classical MHC molecule CD1d [14], while gd T cells are not
MHC restricted and recognize a diverse range of molecules,
including soluble non-protein antigens [15]. All of these T
lymphocyte subsets have been examined for their role in tumor
development and anti-tumor immunity, each with unique roles in
directing the immune response.

1.2. Cytotoxic T lymphocytes

Mice harboring specific immune-based genetic deficiencies are
more susceptible to formation of carcinogen-induced sarcomas,
and depending on the specific defect, are also more prone to
develop certain spontaneous tumors and lymphomas [16,17]. The
ability of immune-deficient mice to reject and/or inhibit the

growth of many, but not all cell lines is also impaired. Numerous
studies have shown that, due to their ability to produce IFNg and
directly kill target cells, both CD8+ CTLs and natural killer (NK) cells
are the critical mediators of the anti-tumor response [16]. gd T
cells, which share characteristics with both CTLs and NK cells, are
also involved in the anti-tumor response in epithelial tissues such
as the skin [18], where they can be the dominant T cell population
[15]. The relative importance of CTLs, NK cells, and gd T cells is
highly dependent upon the cancer model being used. Even in the
skin, genetic deficiency of ab T cells increases sarcoma formation
following administration of methylcholanthrene (MCA), but not
7,12-dimethybenz[a]anthracene (DMBA) or 12-O-tetradecanoyl-
phorbol-13-acetate (TPA) [18], while the absence of CD8+ T cells
does not influence the development of neoplasms in a mouse
model of de novo squamous carcinogenesis, e.g., K14-HPV16 mice
[19].

Epidemiological studies of cancer incidence in acquired
immune deficiency syndrome (AIDS) and organ transplant patients
reveal that the relative risk (RR) for cancer development varies
considerably depending upon organ site and cancer etiology
[17,20] where viral-associated cancers, in particular Human
Herpes Virus 8-associated Kaposi’s sarcoma, Epstein-Barr virus-
associated Non-Hodgkin’s lymphoma and HPV-associated squa-
mous carcinoma, are elevated in immune suppressed individuals
due largely to lack of protection against viral infections or viral re-
activation in the absence of T cells [21]. That said, some cancer
types occur with increased frequency in selected groups of
immune compromised patients for reasons unrelated to infection
for example, chronic exposure to carcinogens (tobacco) for thoracic
malignancies, whereas head and neck, esophageal, gastrointestinal
and pancreatic cancers are increased in liver transplant patients
associated with prior history of alcohol (and tobacco) use [22,23].
On the other hand, the RR for the most common non-viral-
associated solid tumors of epithelial origin, including breast and
prostate, are decreased in immune suppressed patients, with some
of these having a RR less than 1.0 [17,20].

Examination of T cell infiltrates in tumors reveals cells that can
display activation markers and are able to recognize tumor
antigens [16], indicating that some tumors are indeed immuno-
genic and can induce an anti-tumor immune response. Tumor
antigens encompass both neo and overexpressed antigens, e.g., c-
myc, HER-2/neu and p53 [24], as well as host/stromal cell-derived
antigens unique to individual tumors. Clinical studies have even
reported accumulation of autoantibodies against extracellular
matrix (ECM) components, including anti-collagen type I, III and V,
as well as anti-fibronectin antibodies that accumulate in lung
cancer and nasopharyngeal patients [25]. How then do neoplastic
cells, expressing mutant proteins in an inflammatory microenvi-
ronment that seemingly engenders a robust T cell response, avoid
killing by cytotoxic cells? Importantly, lymphocytes do not act in
isolation, and their effector functions are largely dependent upon
the release of cytokines and binding of inhibitory and activating
receptors to ligands expressed by other leukocytes, stromal cells,
and even neoplastic cells. For example, NK cells are potent
regulators of CD8+ T cell responses through their release of IFNg,
which provides a maturation signal for tissue resident DCs and
assists in CD8+ T cell effector function; meanwhile, cytokines
released by mature DCs and activated T cells are important for
promoting NK cell effector function [26]. These interweaving
regulatory pathways are necessary to initiate, direct, maintain and
eventually shutdown an appropriate immune response. Such
pathways are also necessary to prevent an inappropriate immune
response: despite central tolerance through negative selection of
self-reactive lymphocytes, peripheral tolerance mediated by
cytokines, inhibitory receptors and immune regulatory cell types
is necessary to prevent autoimmune disorders. As cancer cells are

Fig. 1. T cell lineages and subsets. Successful rearrangement and expression of a TCR
determines lineage commitment between gd and ab T cells. Recognition by ab T
cells of MHCI, MHCII, or CD1d drives CD8+, CD4+ or NKT cell development,
respectively. Strong recognition of peptide:MHCII complexes by CD4+ cells drives
natural TReg cell development in the thymus, otherwise CD4+ T cells differentiate
into TH1, TH2, TH17 or inducible TReg cells following activation in the periphery, with
polarization directed by IL-4, IL-6, IL-12 and TGF-b. Type I NKT cells are defined by
expression of specific a-chain regions (Va14-Ja18 in mice, Va24-Ja18 in humans),
but the reason for functional differences between type I and type II NKT cells is
unclear.
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largely recognized as ‘self’, it is not surprising they utilize similar
mechanisms that effectively dampen anti-tumor immunity; thus,
T lymphocytes are intimately involved in regulating both pro- and
anti-tumor immunity and chronic inflammation within the tumor
microenvironment.

1.3. Regulatory T cells

Since the rediscovery of suppressor T cells as CD4+CD25+

regulatory T cells, and their further characterization as cells
expressing glucocorticoid-induced tumor necrosis factor receptor
(GITR), cytotoxic T lymphocyte antigen (CTLA)-4, and uniquely, the
transcription factor forkhead box P3 (FoxP3), this T cell subset has
become an intense focus of cancer research. TReg cells can develop
in the thymus or can be converted in the periphery by exposure to
transforming growth factor (TGF)-b [27]. These ‘natural’ and
‘inducible’ TReg cells, respectively, utilize the same mechanisms to
mediate immune suppression and may perform overlapping
functions [28]. A number of regulatory T cells that do not conform
to the CD4+CD25+FoxP3+ phenotype have also been described, but
these remain poorly characterized [29] and evidence of a role for
these cells in cancer has so far been limited to the isolation of IL-10
producing CD8+ T cells from human ovarian tumors [30]. Immune
suppression of CD4+ and CD8+ T cell responses by TReg cells is
mediated both in the secondary lymphoid organs where T cell
activation occurs, and in the tissues [31]. Interestingly, in a
pancreatic islet allograft model, TReg cells were shown to enter the
inflamed tissue and then migrate to the lymph nodes, where these
sequential series of steps was found to be associated with
increasing graft survival time [32].

While a host of molecules have been described as important for
mediating TReg cell suppression, these molecules have been
broadly classified as acting in one of four ways [33]: (i) cytokine
inhibition, such as with TGF-b, IL-35 and IL-10; (ii) direct cytolysis
of effector T cells through perforin and granzyme; (iii) metabolic
disruption, such as IL-2 deprivation and cyclic adenosine mono-
phosphate (cAMP) transfer; and (iv) inhibition of DC function, such
as through binding of CTLA-4 to CD80/86 and the induction of
indoleamine 2,3-dioxygenase (IDO). These mechanisms appear to
have overlapping but non-redundant roles, with the degree of
importance being tissue and model dependent [34]. This may be
significant in cancer, as CD4+CD25high tumor-infiltrating T
lymphocytes from patients with head and neck squamous cell
carcinoma (HNSCC) were found to mediate suppression through
IL-10 and TGF-b, while the same population from peripheral blood
did not express these cytokines and were less able to suppress
proliferation [35]. A role for IL-10 and TGF-b has also been revealed
in mice following injection of a fibrosarcoma cell line [36], while a
role for perforin- and granzyme B-dependent killing of NK and
CD8+ T cells was found in mice after injection of a lymphoma cell
line [37]. Other than these studies, the mechanisms by which TReg
cells mediate suppression in cancer have been largely ignored.
Instead, research has been focused on correlating TReg cell
infiltration with prognosis and attempts to deplete TReg cells with
anti-CD25 antibody based therapies [29].

Suppression by T cells in solid tumors was first suggested by
Fujimoto et al. [38], cumulating in work by North and colleagues,
who showed that the ability to reject a second subcutaneous
injection of a fibrosarcoma cell line was inversely correlated to
increased suppressor activity of CD3+CD4+ cells over time [39,40].
These findings have since been expanded to show that depletion of
CD25+ cells, which are largely CD4+FoxP3+, reduces tumor growth
of some tumor cell lines [29], as well as MCA-induced fibrosarco-
mas [41,42]. Infiltration of TReg cells into the tumor is observed in
all of these models, while an increased percentage of TReg cells in
the periphery is observed only in some instances. In one study

using a fibrosarcoma cell line, depletion of CD4+ cells resulted in
CD8+ T cell-dependent tumor regression in 50% of the mice [36],
that was increased to 100% following either CD4+ or CD25+ cell
depletion when another fibrosarcoma-derived cell line expressing
a strong antigen was used [36]. Together with other studies,
experimental systems such as these indicate that initiation of a
CD8+ T cell response is possible during tumor development,
depending on the immunogenicity of the tumor antigens involved,
but that local and/or systemic immune suppression by TReg cells
can limit their effectiveness. Unfortunately, these results have
been limited in scope to transplantable tumormodels representing
few tumor types, and thus further investigation is required to
determine whether TReg-dependent immune suppression is
applicable to a wide range of spontaneous tumors, as might be
expected.

Increased number of tumor-infiltrating FoxP3+ cells is associ-
ated with poor prognosis in several cancers, including hepatocel-
lular carcinoma [43], ovarian carcinoma [41], pancreatic ductal
carcinoma [44], cervical cancer [45], non-small cell lung carcinoma
[46], HNSCC [35], and breast cancer [47,48]; with varying degrees
of prognostic value regarding patient outcome. As with some
mouse models, increased frequency of TReg cells in peripheral
blood of some cancer patients has been reported [49]. Peripheral
blood TReg cells from patients with ovarian cancer displayed equal
suppressive capacity compared to tumor-derived TReg cells [41].
This contrasts with the study of patients with HNSCC [35],
highlighting the potential for differences in the immune response
based on cancer type and/or etiology.

Attempts to translate TReg research into the clinic have focused
around CD25+ cell depletion using denileukin diftitox. Known
commercially as Ontak, this compound composed of IL-2 fused to a
portion of diphtheria toxin has been approved for treating CD25+

cutaneous T cell leukemia and lymphoma [29]. Ontak administra-
tion has been demonstrated to reduce the numbers of peripheral
TReg cells and improve T cell activation in a small number of
patients with either lung, ovarian, breast, or renal cancer; either
alone or in combination with DC-based vaccination [50,51]. Other
small studies have confirmed these findings, but as before,
objective clinical responses were rare. Furthermore, a larger study
with NSCLC patients observed no objective clinical responses, and
almost half of the patients suffered side effects usually associated
with IL-2 immunotherapy [52]. Dosage optimization thus remains
an issue, as does route of administration, as intratumoral injection
of anti-CD25 antibodies demonstrated efficacy in mouse models
[36]. Determination of which cancer types are most suitable for
TReg depletion is also required, as the ability of CD25+ cell depletion
to improve anti-tumor immunity is known to depend on the tumor
type [53]. Finally, combinatorial therapies, such as CD25+ cell
depletion with blockage of immunosuppressive molecules such as
CTLA-4 and programmed death (PD)-1 [54], have great potential to
overcome immune suppression within the tumor, although the
induction of autoimmune diseases will likely remain an issue for
patients.

1.4. T helper cells

Lineage commitment between CD4+ and CD8+ T lymphocytes
occurs during development within the thymus. Further differenti-
ation of the CD4+ lineage, with the exception of natural TReg cell
development, requires T cell activation through MHCII and co-
stimulatory molecules, as well as cytokine dependent signaling
that is responsible for directing the cell towards a particular
lineage (Fig. 1). Classical differentiation of CD4+ T cells into TH1
and TH2 cells,mediated by IL-12 and IL-4 respectively, was recently
updated to include a new TH17 lineage [10,55]. TH17 cells are
induced by a combination of IL-6 and TGF-b and mediate their
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effects through secretion of IL-17(A), IL-17F, IL-21 and IL-22 [56].
Many of these cytokines increase the severity of autoimmune
diseases in mouse models by promoting inflammation, but also
appear to be functionally important in protecting against some
extracellular pathogens, possibly by mediating leukocyte recruit-
ment through the induction of chemokine expression [57,58].

TH17 cells have been observed in patients with ovarian [59],
prostate [60] and gastric cancer [61], and high numbers of IL-17
producing cells in hepatocellular carcinomapatients is an indicator
of poor prognosis [62]. In mice, transgenic expression of IL-17 by
cell lines increases tumor growth by promoting angiogenesis
[63,64], knockdown of the IL-17 receptor in 4T1 mammary
carcinoma cells reduces survival and tumor growth [65], and IL-
17 depletion delays development of chemically induced papillo-
mas [66]. This effect appears to be mediated by a pathway of IL-17
inducing IL-6 production by both neoplastic and stromal cells, that
in turn leads to activation of Stat3 [67]. Not only is Stat3 involved in
upregulating genes that promote tumor growth and immune
suppression [68,69], but it also mediates expression of IL-17 [70],
potentially leading to a dangerous feedback loop (Fig. 2).

However, as with inflammation in general, IL-17-dependent
inflammation may have both positive and negative effects on
tumor growth, depending on the tumor model. MC38 colon cancer
cell growth is enhanced in IL-17-deficient mice [71], while
adoptive transfer of in vitro polarized TH17 cells specific for a
B16 melanoma antigen can induce tumor regression [72]. This
effect appears to depend upon IFNg, as blocking antibodies prevent
TH17 cell transfer from causing tumor regression [72], while
reduced frequency of IFNg producing cells were observed in IL-17-
deficient tumors [71]. Adding to the confusion is that both IL-21
and IL-22 activate Stat3, and IL-21 can promote Th17 differentia-
tion [56].Meanwhile, CD8+ T cells primed in vitro in the presence of

IL-21 provide a more robust anti-tumor response upon adoptive
transfer, and IL-21 therapy is currently in clinical trials for cancer
treatment [73].

Not surprisingly, CD4+ T cell-deficiency (and elimination of TH1,
TH2, TH17 andmost TReg cell populations) has differential effects in
different mouse tumor models [19,74–77]. In general, TH1
polarization is related to anti-tumor effects, while TH2 polarization
is thought to promote tumor formation [20,78,79]. Direct targeting
of TH1 development and effector functions, through IL-12 and IFNg
respectively, clearly indicate a role for TH1 in tumor rejection [80].
Genetic deficiency in IFNg or IFNg receptor 1, or anti-IFNg
antibody treatment, increases MCA-induced sarcomas [81,82],
with loss of IFNg also shown to increase the rate of spontaneous
lymphomas and lung adenocarcinomas [83]. Similarly, IL-12
genetic deficiency increases the frequency of chemically induced
sarcomas [84] and papillomas [85], while exogenous IL-12
treatment has the opposite effect [86]. Notably, IL-12 dependent
rejection of a sarcoma cell was blocked by administration of
neutralizing anti-IFNg antibodies [87]. IFNg production is not
limited to TH1 cells however, and production by CD8+ T cells, gd T
cells, NK cells, and NKT cells is also dependent upon IL-12 [88]. In
one study, loss of IFNg expression by gd T cells was found to
account for the increase in MCA-induced carcinogenesis in IFNg-
deficient mice [89]. Thus, at least in the skin where a higher
percentage of gd T cells are found, the importance of TH1 cells may
be minimal.

Perhaps the best evidence for a specific role for TH1 polarization
is in mice deficient for signal transducers and activators of
transcription protein 6 (STAT6), which display increased TH1
polarization due to the block in IL-4 signaling [16]. These mice
were able to reject tumors formed through injection of a
mastocytoma cell line that grew permissively in normal mice
[90] and were more resistant to growth of the 4T1 mammary
carcinoma cell line [91]. Cells from the lymph node of tumor
bearing STAT6-deficient mice produced more IFNg following
secondary stimulation [90], while splenocytes from these mice
displayed increased killing against the cell lines [90,91]. STAT1-
deficient mice meanwhile display increased TH2 polarization due
to the block in IFNg signaling, and are more susceptible to tumor
development [92]. These results are consistentwith the notion that
TH1 polarization increases IFNg production, leading tomore robust
anti-tumor immunity through improved CTL responses. Impor-
tantly, direct effects of IFNg on inhibiting proliferation, promoting
apoptosis, and inhibiting angiogenesis have been observed, and
loss of sensitivity to IFNg reduces the immunogenicity of tumors
[88]. Intriguingly, IFNg has been found to increase expression of
MHCI on MCA-induced sarcomas, thereby improving CTL killing
[93], suggesting an additionmechanism bywhich IFNg production
by TH1 and other lymphocytes may assist anti-tumor immunity.

By virtue of reduced IFNg production, TH2 polarization is likely
to be detrimental to the anti-tumor response. TH2 polarization is
dependent upon, and leads to, production of IL-4. This differs from
TH1 and TH17 polarization, which are not induced by their
respective cytokines, although these are involved in lineage
stabilization [10,55]. In addition to reducing TH1 polarization,
IL-4may have direct immunosuppressive effects on CD8+ T cells, as
in vitro activation of naı̈ve CD8+ T cells in the presence of IL-4
reduces effectiveness of adoptive transfer of tumor-specific
transgenic T cells [94,95]. It should be noted however, that these
cells, termed TC2 (as opposed to TC1 CD8+ T cells activated in the
presence of IL-12), were still able to improve survival from B16
melanoma cells in the lung when transferred in greater quantities
[95]. Subsequent work by the same group showed that IL-4 and IL-
5 expression by the adoptively transferred TC2 cells was important
in mediating this effect [96]. Recombinant expression of IL-4 by
several tumor lines also greatly improves clearance [97], and one

Fig. 2. T cell-derived cytokines regulate pro- and anti-tumor immunity. NK cells, gd
T cells, and CD8+ CTLs mediate anti-tumor immunity by inducing cell death in
neoplastic cells. The cytotoxic effector functions of these cells are supported by
IFNg released from TH1 and type I NKT cells, as well as by self-production of IFNg
that further drives TH1 polarization. TH2 polarization opposes TH1 polarization, and
the release of IL-4 and IL-13 by both TH2 and type II NKT cells can direct
macrophages towards an M2 phenotype. Macrophages polarized by IL-4 promote
metastasis through the release of EGF, while production of TGFb suppresses the
immune response directly, or indirectly through promotion of TReg development. In
the presence of IL-6, TGFb can also promote TH17 polarization. IL-17 induces the
production of IL-6 by tumor cells, which both promotes tumor cell growth and
further drives TH17 polarization, while IL-21 has been shown to enhance CTL
effector function. Multiple cell types and pathways have been omitted for clarity.
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study found that ovalbumin (OVA)-specific TH2 polarized cells
helped clear B16melanoma lung colonies expressing OVA through
recruitment of eosinophils [98]. Is IL-4 production, and by
extension TH2 polarization, therefore protective? Probably not,
since the increased anti-tumor response does not depend upon
endogenous IL-4, but instead upon an effective TH1 and CTL
response by infiltrating leukocytes [96,99]. By promoting inflam-
mation and leukocyte recruitment, IL-4 production does appear to
improve anti-tumor immunity. However, this protective effect is
time-dependent, with later stage tumors more resistant to the
adoptive transfer of IL-4 producing CD8+ cells [95]. Adoptive
transfer of IL-4 producing TH2 cells, or administration of IL-4
intravenously, also increases lung colonization of B16 melanoma
cells injected intravenously [100]. Thus, while IL-4 has the
potential to improve anti-tumor immunity, its use may be limited
therapeutically to inducing acute inflammation prior to the
development of a chronically inflamed tumor microenvironment,
with a TH2 type response itself being detrimental for anti-tumor
immunity.

Also produced by TH2 cells, IL-13 affects the immune response
in many of the sameways as IL-4 through activation of Stat6 [101].
As with IL-4, IL-13 expression by tumors can improve the anti-
tumor response [102], while endogenous IL-13 can inhibit anti-
tumor immunity [103]. T cells do not express the type II IL-4
receptor necessary for binding to IL-13 however, and IL-13 instead
appears to inhibit the CTL response indirectly by increasing TGF-b
production by myeloid cells in the tumor [104]. Notably however,
the source of this IL-13 did not appear to be TH2 cells in this model,
but instead NKT cells [103]. Both IL-4 and IL-13 are considered to
be the inducers of the M2 phenotype in monocytes/macrophages,
reducing inflammatory cytokine expression and increasing ex-
pression of immune suppressive cytokines, resulting in indirect
immunosuppression [7,105]. We have recently reported that IL-4
also affects late-stage mammary cancer development by mediat-
ing the activity of tumor-associated macrophages (TAMs) [77]. In
the MMTV-PyMT mouse model of mammary carcinogenesis, lung
metastasis was dramatically reduced by genetic deficiency of
either CD4 or IL-4Ra (which would prevent IL-4 and IL-13
signaling). In vitro, IL-4 expression by TH2 cells was found to
increase expression of epidermal growth factor (EGF) by TAMs,
enhancing the ability of neoplastic cells to extravasate into the
circulation. IL-4 and IL-13 may also affect tumor growth
independent of their effects on the immune system, as many cell
types express the type II IL-4 receptor that binds both IL-4 and IL-
13 [106]. This has not been addressed bymany studies, but IL-4 has
been shown to reduce angiogenesis by inhibiting endothelial cell
migration [107,108]. IL-4 and IL-13 also inhibit proliferation of
several epithelial cancers, although IL-13 can also promote
proliferation and/or inhibit apoptosis of some hematological
malignancies [101] as well as breast carcinomas in some models
[109].

1.5. Natural killer T cells

NKT cells play a key regulatory role in directing a TH1 or TH2
polarized immune response through the rapid production of IFNg,
TNFa, IL-4, and IL-13 following stimulation. This is observed in
mice deficient for NKT cells, as infections in thesemice, particularly
bacterial or parasitic, are often more severe [110]. As with
conventional CTL and TH cells, NKT cells develop in the thymus
and express the a and b chains of the TCR. Instead of recognizing a
peptide presented by MHC class I or II molecules however, the TCR
expressed byNKT cells recognizes glycolipid antigens presented by
CD1d, a non-classical member of the MHC family [14]. Type I, or
invariant, NKT cells (iNKT) express a specific alpha chain variable
(V) and joining (J) region (Va14-Ja18 in mice, Va24-Ja18 in

humans) in combination with a limited number of b chains, and
were identified for their ability to recognize a-galactosylceramide
(a-GalCer). Type II NKT cells, while also recognizing CD1d, express
a variety of ab TCR chains and are activated by glycolipids that
remain poorly defined.

Interest in targeting NKT cells for anti-cancer therapy began
with the discovery that treatment with a-GalCer increased the
survival time of mice injected with B16 melanoma cells [111]. The
anti-tumor effects of a-GalCer [112] and IL-12 treatment [113]
were subsequently found to depend upon the presence of iNKT
cells. Ja18-deficient mice, that lack iNKT cells, were also found to
bemore susceptible toMCA-induced fibrosarcomas [84]. Although
capable of directly lysing tumor cells in a perforin-dependent
manner, a series of studies by Godfrey and colleagues utilizing
MCA-induced fibrosarcomas demonstrated that both NKT-depen-
dent immune surveillance and protection provided by IL-12/a-
GalCer therapywas dependent upon IFNg production by NKT cells,
leading to CTL-dependent and NK-dependent anti-tumor
responses, respectively [84,114,115]. It has yet to be determined
if these same mechanisms are at play in solid tumors of epithelial
origin or in models of de novo cancer development.

In addition to possible direct effects of IFNg production by NKT
cells on CTL and NK cells, a-GalCer treatment has been shown to
act as an adjuvant throughNKT-dependent DC activation and IL-12
production [116,117]. Pulsing DCs in vitro with a-GalCer prior to
adoptive transfer also more effectively prevents liver metastasis of
B16 melanoma cells than injection of a-GalCer [118], possibly by
improving long-term IFNg production and limiting TH2 cytokine
expression [119,120]. Unfortunately, despite these successes in
murine tumor transplantation models, injection of a-GalCer, a-
GalCer pulsed DCs, or transfer of a-GalCer activated NKT cells all
proved ineffectual in early clinical trials in patients with a range of
cancer types, even though NKT activation was evident [121].

Using transplantable sarcoma models in which immune
surveillance was evident, work by Berzofsky and colleagues found
increased resistance of CD1d-deficientmice to tumor development
[122]. This was due to the absence of IL-13 producing NKT cells in
these mice [103], which were responsible for promoting TGFb
production by splenic CD11b+Gr-1+ immature myeloid cells in a
model using NIH/3T3-derived cell lines [104]. By comparing Ja18-
deficient (lacking type I iNKT cells) to CD1d-deficientmice (lacking
both type I and type II NKT cells), they concluded that type II NKT
cells were responsible for inhibiting immune surveillance in
several models where CD25-depletion had no effect [123].
Importantly, in agreement with other studies, a-GalCer treatment
increased protection in these models [124]. Meanwhile, stimula-
tion of at least a portion of type II NKT cells with a sulfatide
compound reduced protection, and could even counteract the
protection offered by a-GalCer treatment [124]. The most
parsimonious explanation for these observations is that IFNg
production by type I NKT cells improves the CTL and NK cell
responses, while IL-13 production by type II NKT cells inhibits the
immune response (Fig. 2). As T, NK, and NKT cells are unresponsive
to IL-13, the results also suggest that the effects of NKT cells
depend on an intermediate cell, such as DCs [125]. It should be
noted however that studies using other tumor injection models
found that improved protection of CD1d-deficient mice was not
related to IL-13 [126,127]. Protection through adoptive transfer of
NKT cells is also dependent on whether the NKT cells are CD4+ or
CD4!, and upon the tissue used to isolate NKT cells, which relates
at least partially to production of IL-4 [128]. In humans, peripheral
blood CD4! NKT cells expressed only IFNg and TNFa, whereas
CD4+ NKT cells produced both TH1 and TH2 type cytokines
following stimulation [129,130]. A possible role for cytotoxic
effector functions by NKT cells can also not be ruled out. Song and
colleagues found that human NKT cells can directly kill monocytes
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pulsed with lysate from human neuroblastoma cell lines [131].
Using immunocompromised mice, the authors found that human
NKT cells reduced the number of monocytes in the tumors and
inhibited growth of the xenograft, indicating that NKT cells also
inhibit pro-tumor immunity by killing tumor-associated macro-
phages. Tissue localization and tumor type may therefore greatly
affect cytokine expression by NKT cells and determine whether
they promote or inhibit the anti-tumor response.

2. Conclusions

Although first described over 20 years ago [132], the complexity
by which the immune system directs a TH1 or TH2 response is only
now being appreciated. The concept of polarized populations of
immune cells has now been expanded to include CD8+ CTLs,
macrophages, and NKT cells. Whether these populations can be
defined by genetic programs remains to be determined, but the
effects of this polarization on the anti-tumor response demon-
strate the importance for further research. Inhibiting immune
suppression by blocking the activity of regulatory immune cells, or
blocking self-suppression of the CTL response by inhibitory
molecules such as PD-1 and CTLA-4, holds great potential for
improving anti-tumor responses. These approaches will likely be
enhanced by therapies that also dampen the effect of pro-tumor
immune molecules released by other leukocytes that enhance
angiogenesis, tissue remodeling and cell survival pathways, and in
combination, may increase clinical efficacy of adoptive transfer
therapies to engender durable anti-tumor immunity. Early clinical
results have shown success in some of these areas, although the
ability to inhibit peripheral tolerance and improve the anti-tumor
response appears directly related to the severity of autoimmunity
that is also induced. Being able to release the full potential of the
immune response, while also being able to appropriate direct and
control that response, is key to the future of immunotherapy.
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